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Adaptive control technologies that incorporate learning algorithms have been proposed 
to enable automatic flight control and vehicle recovery, autonomous flight, and to maintain 
vehicle performance in the face of unknown, changing, or poorly defined operating 
environments.  In order for adaptive control systems to be used in safety-critical aerospace 
applications, they must be proven to be highly safe and reliable.  Rigorous methods for 
adaptive software verification and validation must be developed to ensure that control 
system software failures will not occur.  Of central importance in this regard is the need to 
establish reliable methods that guarantee convergent learning, rapid convergence (learning) 
rate, and algorithm stability.  This paper presents the major problems of adaptive control 
systems that use learning to improve performance.  The paper then presents the major 
procedures and tools presently developed or currently being developed to enable the 
verification, validation, and ultimate certification of these adaptive control systems. These 
technologies include the application of automated program analysis methods, techniques to 
improve the learning process, analytical methods to verify stability, methods to 
automatically synthesize code, simulation and test methods, and tools to provide on-line 
software assurance. 

I. Introduction 
ighly advanced adaptive control systems are needed to fulfill the present and future aerospace needs of the 
nation.  Adaptive control technologies that incorporate learning algorithms have been proposed to enable 

automatic flight control and vehicle recovery, autonomous flight, and to maintain vehicle performance in the face of 
unknown, changing, or poorly defined operating environments.  For civil aviation, adaptive control systems have 
been proposed that use learning to recover loss of vehicle control due to sudden aircraft damage or component 
failure.1-3  For robotic applications, the ability to learn gives adaptive control systems greater capability to adapt to 
changing mission requirements after deployment.  Adaptive control systems have virtually unlimited applications 
for NASA space exploration applications, including mated flight vehicle coordination, docking, and control of 
autonomous robots, flyers, and satellites.4,5 

Because most of these applications are in safety-critical areas, it is obvious that adaptive control systems with 
learning systems will never become part of the future unless it can be proven that this software is highly safe and 
reliable.  Rigorous methods for adaptive software verification and validation must be developed by NASA and 
others to ensure that control system software failures will not occur, to ensure the control system functions as 
                                                           
* Computer Scientist, Computational Sciences Division, M/S 269-2, Senior Member AIAA. 
† Computer Scientist, RIACS/NASA Ames, M/S 269-3. 
‡ Senior Scientist, QSS/NASA Ames, M/S 269-3. 
§ Aerospace Engineer, Controls and Dynamics Branch, M/S 4840D, Member AIAA. 
** Research Engineer, AS&M, M/S 4830D, Member AIAA. 
†† Research Engineer, Contek Research, M/S 4830D, Senior Member AIAA. 

H 



 
American Institute of Aeronautics and Astronautics 

 

2 

required, to eliminate unintended functionality, and to demonstrate that certification requirements can be satisfied.  
To help bridge this gap, NASA and others are conducting software reliability research aimed at developing usable 
procedures and methods to verify the reliability of adaptive control system software employing learning algorithms. 

The organization of the remainder of this paper is as follows: section 2 provides a cursory look at adaptive 
control system architecture to identify the general structure.  Section 3 will present some of the major problems that 
arise in the use of learning algorithms for adaptive systems.  In section 4, the major procedures and tools presently 
developed or currently being developed to enable the verification, validation, and ultimately certification of these 
adaptive control systems will be presented.  These technologies include the application of automated program 
analysis methods, techniques to improve the learning process, analytical methods to verify stability, methods to 
automatically synthesize code, simulation and test methods, and tools to provide on-line software assurance. 

II. Adaptive Control System Architecture 
Even though this paper is primarily aimed at addressing the problems of adaptive control systems with learning 

algorithms, it is important to recognize that adaptive algorithms are in reality only one part of the total control 
system.  In nearly all cases, the adaptive controller itself must be controlled by a non-adaptive, supervisory 
controller that interfaces to a human being and other systems.  This larger program, usually implemented using finite 
state automata, is called the outer-loop controller. 

A. Outer-loop Control Architecture 
Control systems for large aircraft and spacecraft are usually comprised of hybrid systems involving both inner-

loop and outer-loop control architectures (Fig. 1).  The outer-loop controller governs the conditional execution of the 
inner loop controllers.  From a systems perspective, the outer-loop controller generally represents the top-level 
executive program that coordinates a myriad of mission management actions including providing a human-machine 
interface, health monitoring, tracking of vehicle performance, navigation, guidance, and flight control laws to 
implement a variety of functions, perhaps even implementation of autonomous flight control.  Outer-loop control 
software is generally comprised of finite state automata in which the sequencing of control tasks and multiple 
program threads is done conditionally based on finite state logic. 

For example, the outer-loop controller of a jetliner might be programmed to issue pilot warnings when certain 
aircraft flight conditions (altitude, speed) are inconsistent with pilot actions (e.g., flaps or landing gear in wrong 
position).6  This logic is called finite state logic because it is implemented using only a discrete logic to represent the 
conditional status of the aircraft (e.g., “speed is equal to or below maximum” is either true or false).  The states are 
either achieved or they are not; there is no in-between.  Another good example of the outer-loop control logic is the 
kernel of an autonomous agent used to operate a space craft, such as the NASA Deep Space 1 spacecraft7.  In this 
case, the outer loop controller uses a planner and a scheduler to decide when to sequence different program tasks.  
Resources (e.g., motors, camera) are either free to use or they are not (locked).  The onboard logic must ensure that 
the multiple program threads do not conflict with each other in the use of shared resources and that the logic of the 
outer-loop controller does not create a situation from which there is no recovery. 

 
 

Aircraft Sensors

Ground Control

Pilot Commands

Data
Gathering
Processor

Flight Computer
(Executive) 

Real-time
Displays

Flight
Control

Mission
Planning

Health
Management Navigation Propulsion

Control

Aircraft Sensors

Ground Control

Pilot Commands

Data
Gathering
Processor

Flight Computer
(Executive) 

Real-time
Displays

Flight
Control

Mission
Planning

Health
Management Navigation Propulsion

Control

 
 

Figure 1.  Outer-loop controller architecture. 
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B. Non-adaptive Inner-loop Control Architecture 
Inner-loop controllers can provide very specific functions, such as providing vehicle flight control, stability 

augmentation, or active vibration control.  The term inner-loop control can be used to refer to feedback loops 
controlling servo-actuators themselves.  However, in the context of the present discussion, the inner-loop controller 
is meant to refer to the system indicated in Fig. 2. 

Most modern control systems model the dynamics of this inner loop as a set of first-order, differential equations 
of the form 

DuCxy

BuAx
dt
dx

+=

+=
 (1) 

where x  represents a vector of vehicle “states” to be controlled, u is a vector of control inputs, and y  is a vector of 

measurements8.  For non-adaptive control, the A , B , C , and D  coefficient matrices are fixed parameters whose 
values are identified prior to operation.  In this scheme, an error signal formed as the difference between the desired 
state and measured state is fed to a controller that, if designed correctly, generates inputs to minimize the error 
signal. The most widely used controller of this type is the Proportional Integral Derivative (PID) controller, due to 
its simplicity, performance and robustness.  A PID controller forms a control signal that is proportional to the error, 
proportional to the integral of the error, and/or proportional to the derivative of the error: 
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The proportionality constants ( PK , IK  and DK ) are called the gains of the controller and are normally vectors for 
multi-input, multi-output systems.  Tuning the controller is a matter of finding the right gain settings.  If the gains 
are selected too large, the system will exhibit instability; yet if selected too low, the system response may be too 
sluggish, or even unstable.  Analytical methods for calculating stable gain values (e.g., root-locus, Nyquist, Bode, 
Nichols) are well understood and have been widely used.8 

Although fairly simple to implement, PID and other types of conventional controllers unfortunately have the 
limitation that once the controller is put into operation, the gains and system parameters do not change.  If the 
performance of the controller degrades after start-up, the only remedy is to stop the system and re-tune the gains 
prior to resuming operation.  Adaptive control systems have the advantage of being able to adjust controller gains 
while in operation to avoid this problem. 
 
 
 

PID Controller

Feedback Gains

U

Sensors

Control
Surfaces

-
Error

ε

Desired
State, X

Measured
State, X’

Y

PID Controller

Feedback Gains

U

Sensors

Control
Surfaces

-
Error

ε

Desired
State, X

Measured
State, X’

Y

 
 

Figure 2.  Conventional (non-adaptive) inner-loop controller. 
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C. Adaptive Control Architecture Using Learning Algorithms 
Adaptive control systems with learning algorithms have been proposed to help aircraft maintain consistent 

controller performance in the face of unforeseen events, such as sudden loss of a control surface or gradual 
deterioration of control system components.2,9  For example, if an airplane aileron ceases to function, the aircraft 
may yet be controllable using the remaining working control surfaces and propulsion sources.  To do this 
automatically, an adaptive controller is required that can learn how the working control surfaces can be used to fly 
the plane.   

Figure 3 provides a notional diagram of an adaptive control system to illustrate two possible roles in which 
learning can be used.  First, a learning algorithm may be used to adaptively identify a transfer matrix (stability 
derivative matrix) that relates the control inputs to the system outputs.  The identified transfer matrix can then be 
used in a minimum variance control law or linear quadratic Gaussian (LQG) controller8 to achieve better system 
performance in a changing flight environment.  In this way, the learning algorithm effectively changes the controller 
gain matrix.  The system identification may be done in real-time (on-line) by a number of learning algorithms (e.g., 
Kalman filter10, LMS11 algorithms).  Jacklin12 provides substantial detail of the use of learning algorithms to reduce 
helicopter noise and vibration with this type of inner-loop controller.  Another way in which learning algorithms can 
be used is to directly compute control commands to augment a non-adaptive (PID) controller. An example of this 
type of controller for an F-15 aircraft is presented in Ref. 13.  The controller uses a neural network to generate 
supplementary control inputs to help the pilot fly the aircraft in the event of control surface failure or aircraft 
damage. 

In order to be used on-line, all of the learning algorithms update a previous value of the identified parameters 
based on some learning error as follows 

( )
( )edictedMeasuredLearnii

Learnii

yyKTT

errorLearningKTT
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1
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−+=
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This is the learning update rule.  Here, iT  are the parameter values (e.g., transfer matrix row or neural network 

weights) at step i  and the “learning error” is typically computed as the difference between the measured state ( y ) 

and the state predicted using the model parameters.  LearnK  is the adaptation learning gain and it has a large effect 
on algorithm stability and learning convergence.  All learning algorithms, except the non-recursive ordinary least 
squares method, share this type of recursive learning equation in one form or another. 
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Figure 3.  Generic adaptive control system. 
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Over the years, many learning algorithms have been proposed, including the gradient descent, back-propagation, 

Newton, Quasi-Newton, conjugate gradient, and Levenberg-Marquardt methods.10,14  The algorithms differ in their 
search methods and the step length.  For example, the gradient descent algorithm uses a fixed step-length and makes 
parameter changes proportional to the steepest derivative of change.  Some algorithms (e.g., conjugate gradient) use 
the second derivative of the error with respect to the weights (properties of the Hessian) to help optimize speed and 
convergence stability.15 

III. Learning System Verification and Validation Problems 
The process of analyzing and checking the correctness of software is termed verification and validation (V&V).16  

This checking ensures the software functions as designed and meets the user requirements.  In order for software to 
be certified by the FAA under the standards presented in RTCA DO-178B17, the V&V process must be carefully 
documented and the behavior of the fielded software must be the same as that evidenced during V&V testing.  For 
this reason, and because there is no explicit guidance in DO-178B for adaptive systems, it is generally felt that 
certification of learning system presents a major difficulty.  However, as has been recently pointed out by 
Santhanam18, adaptive software will behave deterministically if given the same inputs and started with the same 
initial conditions.  The real verification and validation problems faced by learning systems is proving that the 
learning process is convergent and repeatable, that the convergence rate is acceptably fast, and that the learning 
process is stable. 

A. Learning Convergence Problems 
It is in general difficult to analytically evaluate the convergence of learning algorithms because the adaptation 

process is stochastic and can change in an unpredictable manner over time.  One reason for this difficulty is that 
convergence is heavily influenced by the choice of initial conditions (of parameters and tuning factors), by the 
degree of measurement noise, and by the actions of the controller. 

For example, for the simple case of a single-parameter system, Fig. 4 illustrates what could go wrong when 
trying to search for the value of x  that minimizes an error function.  In this case, the learning process converges to a 
local minimum because the initial condition on x  (point 1) happens to be to left of the local minimum.  Using 
steepest descent learning, corrections are made proportional to the local gradient.  In this example, the search 
ultimately ends up at point 5, the local minimum.  But, had the initial guess for x  been to the right of the global 
minimum, the global minimum (i.e., the best answer) would have been found using the same process. 

This dependency on initial condition poses a considerable problem for leaning systems, especially considering 
that realistic system transfer matrices and neural networks used in modern control applications typically have dozens 
of parameters.  In fact, is not uncommon that these transfer matrices and neural networks have more parameters than 
the actual number of degrees of freedom in the system being controlled.  In that case, many local optimum learning 
solutions usually exist.  Unless the learning system is initialized in exactly the same way each time, a formal 
guarantee that the system will converge to the same solution each time may not exist. 
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Figure 4.  Convergence to local optimum instead of global optimum. 
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Unfortunately, starting the learning process from the same exact initial conditions each time is not a feasible 
solution.  Adaptive controllers with learning algorithms will need to be restarted while the aircraft or spacecraft is in 
flight, either during a system re-boot or when a pilot or an outer-loop controller decides to enable adaptive control. 

Another reason for lack of convergence is that the learning process may stop if the adaptive controller 
successfully performs its intended function.12  Long before the learning process completes, the learning algorithm 
may be able to provide the controller with a transfer matrix that, although not strictly correct, is good enough to 
allow the controller to produce a control input that yields very good control performance.  If this happens, 
subsequent control inputs to the system will be almost identical, since there is no reason to change the control if 
performance is good.  However, the presence of measurement noise on the sensor inputs makes the measured 
vehicle (feedback) state appear to be changing.  As a result, the learning algorithm may seek to learn a system 
transfer matrix that relates the very small changes in control to the measurement noises.  This tends to produce a null 
matrix of identified system parameters.  Ad hoc methods to fix this problem include shutting off the learning process 
at intermediate times, or adding persistent excitation12 to the control commands for the sake of improving the 
learning process.  Such ad hoc fixes, however, are very difficult to analytically verify and validate. 

B. Speed of Learning Convergence 
Lack of sufficient learning convergence rate is another problem faced by adaptive systems, and is closely 

coupled with the problem of stability discussed below in section C.  Even if learning algorithm convergence can be 
assured, the learning process must happen in a sufficiently short amount of time in order to be useful.  A learning 
system used to fly an aircraft must yield productive learning in as little as a few seconds.     

Convergence time is a function of both how long it takes the learning algorithm to perform the numerical 
computations of one iteration cycle, and the number of iterations required for convergence.  In the not too distant 
past (80’s), only computationally efficient algorithms like the Kalman filter or steepest descent gradient search could 
be entertained for application to real time systems.  The advent of high-speed computational capability allows a 
wider variety of learning algorithms to be considered, some of which may produce more learning per iteration. 

In general, there are no analytical or formal methods available to guarantee that a learning algorithm will 
converge to a solution within a given amount of time, unless various assumptions are made about the initial 
conditions and system dynamics.  These will be addressed in section IV below. 

C. Learning Algorithm Stability Problems 
One of the most important problems of adaptive control systems is finding an update method that provides 

stable, yet sufficiently fast learning.  Conventional (non-adaptive) controller designs of the type shown previously in 
Fig. 1 become unstable when the control gains are made too high.  In that case, the controller commands serve to 
over-correct the system repeatedly, so that the control commands oscillate wildly. 

Over the last half of the twentieth century, a variety of analytical methods were developed to aid control system 
designers in the selection of stable controller gains for non-adaptive systems.  These methods include the root locus 
method, Bode method, Nyquist plots, and Nichols chart techniques.  Given a mathematical representation of the 
system, these methods find the region where the controller gains produce stable performance and also indicate the 
approximate highest gains allowed for fast, yet well-damped, dynamic response.   

The stability of the learning (system identification) algorithms are equally important. Incorrect learning of the 
system model parameters can lead to control system instability.  If the identified parameters are used to generate 
corrective control actions, a failure of the learning algorithm can lead to large fluctuations in the control outputs, and 
possible loss of control. 

D. Knowing When Not to Use a Learning Control System 
As a last thought toward the problems of learning systems, it should be mentioned that sometimes learning 

systems are proposed for application where less exotic control system technology will work better.  For example, 
gain scheduling19 is a classical control technique often employed to offer partial adaptive capability, while avoiding 
many of the problems associated with learning systems.  To implement this scheme, a number of controller gain sets 
are determined (off-line) for a finite number of operating conditions or aircraft configurations.  The flight control 
computer is then programmed to select the correct gains based on the current flight condition (airspeed, altitude, 
etc.).    Interpolation between gain sets offers some additional adaptivity, but may not work well in highly nonlinear 
control situations or for unanticipated operating conditions.  This method has been successfully utilized in many 
aerospace applications.  The success of the gain scheduling method depends on the degree to which the system 
operates in discrete, well-defined operating regimes. 
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A problem is knowing when and when not to use a learning system.  Learning is most useful for applications for 
which it is impossible to predict in advance the exact behavior of the system dynamics to be controlled.  Some 
examples are robotic manipulator applications that require identification of changing mass moments of inertia, 
spacecraft control applications for landing or mating with other spacecraft in uncertain environments, or aircraft 
control systems designed to automatically help a pilot fly a damaged aircraft for which the exact nature of the 
damage is not known in advance. 

IV. Verification and Validation Procedures and Tools for Learning Systems  
Satisfying the certification requirements for adaptive control systems will likely necessitate the application of 

several tools and verification methods.  In this section, some of the methods and tools for the verification and 
validation of adaptive control systems are presented.  It should be mentioned at the outset that this body of 
knowledge is in no way felt to comprehensively cover all means available.  The verification and validation of 
adaptive control systems and learning algorithms is still very much an active areas of intense research, so much so 
that it is in no way possible to reference all existing tools and methods rapidly being developed.  These tools and 
techniques include the application of automated program analysis methods, techniques to improve the learning 
process, analytical methods to verify stability, methods to automatically synthesize code, simulation and test 
methods, and tools to provide on-line software assurance. 

A. Tools for Automated Static Analysis 
Although not limited to learning systems, automated static analysis tools have been developed to automatically 

inspect code for a number of bad programming practices and simple programming errors.  Examples of such 
mistakes include use of undeclared variables, use of un-initialized variables, out-of-bound array referencing, wrong 
input of formal parameters in subroutine calls, use of inconsistent data type, and performing mixed-mode 
computations.  A rich body of checklists, coding standards, and literature about this topic has been published.20   
Code review also examines the code to verify that comments are well used throughout and that the program contains 
no dead or unreachable code. 

Static analysis tools analyze every instruction in the source code to determine if the operations performed in that 
instruction can create a problem at runtime. These tools can efficiently detect a wide range of problems even before 
unit testing including: buffer overruns, un-initialized variables, arithmetic overflows and underflows, and 
unreachable code.  The advantage of static analysis methods is their ease of use.  Static analysis programs are used 
in much the same way an ordinary compiler is used to compile a program.  These methods can save many hours of 
human code review and can therefore provide substantial cost savings.  However, a continuing challenge is the 
development of static analysis methods that detect only real problems (not false alarms). 

There are several static analysis tools available, for example Coverity21, PolySpace22, Parasoft23, Clint24, UNO24, 
and CGS25.  All of these tools analyze the source code, without actually executing it. The source code does not need 
to be modified or instrumented.  Results of the analyses are usually displayed in a user-friendly way and the results 
are usually quickly available.  For example, CGS (used for Deep Space 1, Mars Pathfinder, and Mars Exploration 
Rover (C) code) was able to check hundreds of thousands of lines of spacecraft computer code in less than a half 
hour. 

B. Analytical Methods to Improve Learning Convergence 
Perhaps the most difficult verification task is to prove that the learning algorithm of an adaptive control system 

converges to the global minimum under all operating conditions.  Even more difficult than this is the problem of 
knowing what methodology can be used to improve learning performance in the event the learning convergence is 
discovered to be unsatisfactory.  In this section, some methods to improve learning convergence are discussed, 
primarily in the context of neural network weight identification.  This section is not meant to comprehensively 
summarize all relevant work, but it does highlight some of the more recent advances in finding good methods to 
accelerate the learning process and to improve convergence. 

Attempts to improve the convergence of learning algorithms have concentrated on the selection of better energy 
functions and selection of variable learning rate and momentum.26-30  Some benchmarking fast learning algorithms 
have also been derived in the literature.31-33  The most commonly used method is to effectively reduce the weights 
on past inputs and outputs.33  This mechanism is called weight decay by adding a term to the optimizing function 
that is the sum of the squares of the weights such that during training, this term penalizes older weights.  This 
method has been applied to the back-propagation (BP) learning algorithm to effectively speed up the convergence 
rate by solving the flat-spot problem14.  By placing more weight on the most recent measurements, this method of 
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weight adjustment improves the convergence of the learning process by preventing the error signal from becoming 
too small relative to the average signal. 

Since the back-propagation (BP) algorithm34 based on an iterative gradient algorithm to minimize the mean 
square error (MSE) between the desired outputs and the actual outputs for the particular inputs to neural networks 
was proposed many years ago, it has been successfully applied to many areas of science and engineering.  In 
addition to the BP algorithm, various learning rules have been proposed for training of various types of neural 
networks.35-39  In developing the training algorithm for neural networks, optimization algorithms have played an 
important role.    

In neural network applications, the learning process (training) of multilayer feed-forward neural networks 
(MLFNNs) has been realized by of a plethora of first- and second-order algorithms in the literature.36  The majority 
of these learning algorithms are based on the steepest descent method in the form of the back-propagation algorithm. 
Although the steepest descent (SD) method is a good learning algorithm for simple models, even for those cases, the 
method takes an extremely long time to achieve convergence.  Faster convergence speed can be obtained using the 
Gauss-Newton (GN) and Levenberg-Marquardt (LM) methods.  These methods are generally cited as second-order 
techniques and have quadratic convergence learning patterns due to their use of the Hessian matrix. 

However, even these algorithms often fail to converge unless the initial estimation is sufficiently close to the 
solution.  Furthermore, it is difficult to guess a good initial point to avoid sticking at a local minimum even if the 
neural network size is of only several neurons.  To overcome this convergence problem, homotopy methods have 
been proposed to efficiently find multiple solutions for the nonlinear algebraic equations.40-42  Homotopy methods 
reach the globally optimum by defining mappings or “paths” to the desired solution.43,44  In other words, the 
homotopy methods trace the solution path for a problem and find multiple solutions lying on the paths.  The 
homotopies are classified in two classes such as “Fixed-point homotopy” and “Newton homotopy”.  Fixed-point 
homotopy methods have wider convergence regions for the initial guess compared with the Newton homotopy 
methods.42 

In Ref. 45, the authors have proposed a new fast algorithm based on a modified form of the conventional BP 
algorithm.  In order to increase the convergence speed of the BP method, the learning performance index was 
modified to include both linear and nonlinear errors of the output neuron.  This achieved a three-fold increase in 
convergence speed.   

The convergence of the new Mixed Least Square and Least Fourth (MLSLF) algorithm requires less iterations 
than the SBP and provides better generalization.  The MLSLF uses an additional tuning parameter to modify the 
learning speed, sometimes beneficially, yet can cause the divergence in case of bad choice.   

Other fast algorithms include the Modified Back propagation algorithm45, Recursive Least Square algorithm49 
and the Marquardt algorithm48.  A sparse gradient algorithm has been proposed to modify the cost function as the 
sum of the mean square error and a penalty term of the weight vector with an adaptive regularization parameter, 
which shows the asymptotic convergence of the penalty sequence to zero.50-53  The Back Propagation Through Time 
(BPTT)46 algorithm55,56 has been proposed to train neural networks in fewer iterations, but may be highly prone to 
stopping at local minima in the error surface.  Mastorocostas57 has proposed a means of training feed-forward 
networks at a faster rate using constrained optimization methods.  Oyan58 proposes a relaxed model of variable 
kernel density as a means to make the convergence rate of the mean square error approach order O(n-1), regardless 
of the dimension of the data set. 

C. Analytical Methods to Verify Learning Algorithm Stability 
As mentioned above, the learning gains have a marked influence on learning performance.  Although higher 

learning gains tend to increase the speed of learning, high gains also tend to promote instability of the learning 
algorithm.  Certainly, it is possible to verify the suitability of a particular learning gain through simulation at a given 
operating condition (see section F).  The problem with this approach is that defining the stability boundaries of a 
multiple-input, multiple-output adaptive control systems can require many test points at each of many possible 
operating conditions.  For this reason, analytical methods that can determine learning system stability are needed. 

The concept of adaptive control system stability applies to both the outer-loop and inner-loop control software.  
Verification of outer-loop adaptive controller stability can be done by a variety of methods.  Although the outer-loop 
control behavior of most adaptive control systems is nonlinear, one approach is to approximate the system with a 
linear representation and then apply the stability methods used to analyze linear system stability.  Of course, the 
modeling assumptions made to perform this step introduce a level of error into the system.  Moreover, the learning 
process of the inner-loop controller must be frozen or fixed when this is attempted, because the coupled behavior of 
the inner and outer loop controllers is always nonlinear.8  Given these significant limitations, the methods of Bode, 
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Nyquist, Root Locus, Ruth Hurowitz, or Nichols can be used to determine the stability of the adaptive system as a 
function of the controller gains. 

Alternatively, the outer-loop controller stability can be analyzed as a nonlinear system if the control system is 
relatively simple.  Two popular techniques are the phase plane and describing function approaches.  The phase plane 
method provides a graphical representation of the system state by computing state trajectories in a two dimensional 
plane called the phase plane (typically, velocity versus displacement plots).59-62    The phase plane approach has been 
used to analyze stability in biomedical, orbital mechanics, vacuum tube circuits, and dynamic vehicle control 
applications.  The major disadvantage of the phase plane analysis method is that the two-dimensional, graphical 
approach is cumbersome to apply to multiple-input, multiple-output systems.  The other method, the describing 
function (DF) method, can be used to determine the necessary and sufficient conditions for the nonlinear feedback 
system stability.  The describing function utilizes Fourier input-output analysis to find an “equivalent gain” of the 
nonlinear system in the frequency domain.  Describing functions are most generally used for single-input, single-
output feedback systems, although there have been generalizations to multiple-input multiple-output systems.59,63  
The phase plane and describing function methods have been used to analyze the outer-loop stability of the shuttle 
flight control system during orbiter repair maneuver and to examine Space Shuttle control system stability using a 
flexible robotic arm.4,64 

Analytical verification of the inner-loop (learning or system identification) stability is very important for hybrid 
systems because instability of the inner loop dynamics can cause the outer loop control to become unstable as well.  
Generally, stability analysis of learning systems falls into either an analysis of the inner-loop learning algorithm, or 
for the hybrid system as a function of the learning update rule with the outer-loop controller gains held fixed.  Each 
method will be briefly described. 

One approach of analytically verifying the stability of the inner-loop controller is to directly analyze the 
learning rule update equation to mathematical determine the sufficient conditions for stability.  In Ref. 12, the 
stability of the Kalman filter, generalized Kalman filter, LMS filter, and generalized LMS filters are analyzed in this 
manner.  Although the analysis presented therein provides insight into the factors governing stability, these factors 
are a function of the input covariance matrix, which is generally an unknown quantity in most on-line applications. 

Some progress has been made finding stable learning update rules for adaptive systems using Lyapunov’s 
second method65,67  Lyapunov analysis is difficult to apply to realistic aerospace applications, but it is attractive 
because it can be used to find regions of learning system stability without knowledge of the exact solution.  
Application of Lyapunov’s second method to a neural network learning algorithm of an adaptive flight control 
system is described in Ref. 65. 

The Lyapunov method is based on an energy analysis of the system.  Basically, if it can be shown that the total 
system energy as a function of time is either constant or decreasing, the system is stable.  For this to be true, 
sufficient care must be taken when defining the system under study.  If stable, the results of Lyapunov analysis show 
that the errors between the desired and actual outputs of the learning systems are ultimately bounded.  However, the 
ultimate bounds on the error as well as the time required to achieve these bounds can’t be explicitly calculated from 
the theory. 

D. Testing and Simulation Tools for Learning System Verification 
Since analytical determination of stability, convergence, and performance is often difficult to apply, computer-

based simulation plays a major role in the verification of learning systems.  Many aspects of adaptive systems 
learning, in particular convergence and stability, can only be analyzed with simulation runs that provide enough 
detail and fidelity.  For example, a stuck rudder on an aircraft cannot be expressed as a linear model since the failure 
introduces a bias.  Simulation provides a fairly rapid way to: 
  

• evaluate and compare different learning algorithms 
• find good control and learning rule update gains 
• determine how much learning is actually accomplished at each step 
• evaluate the effect of process and measurement noise on learning convergence rate 
• determine stability boundaries 
• test algorithm execution speed on actual flight computer hardware 
• conduct piloted evaluation of the learning system – while in the simulator 
• simulate ad hoc techniques of improving the learning process, such as adding persistent excitation to 

improve identification, or stopping the learning process after error is less than a specified error or after a 
specified number of iterations. 
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Simulators differ primarily in the fidelity with which the plant is modeled.  Higher fidelity simulations require 
more complicated mathematical models of the adaptive system and also greater use of actual (and expensive) 
controller hardware.  In order to be cost-effective, the lowest fidelity test bed should be used as much as possible.  
The behavior of simple linear models should be compared to that of higher fidelity nonlinear models when they are 
available to ensure that analysis performed using the linear model still applies.  Table 1 presents one representation 
of the simulation hierarchy from lowest to highest fidelity. 

The lowest fidelity simulations are usually run on a desktop computer using user-friendly simulation tools in the 
Matlab/Simulink67 environment.  This simulator typically includes the control laws and a linear plant which 
accounts for the aircraft aerodynamics, mass properties, and thrust from the engines.  Models may include some 
uncertainties or perturbations.  The linear simulator is most often used in early control law design and analysis or to 
calculate linear gain and phase margins.  It is important to note that nonlinear adaptive controllers can be represented 
linearly, but the linear model may not provide results with the required accuracy. Changes to the plant model can be 
simulated by changing the system transfer function from one matrix to another with varying frequency.  By varying 
the amount of change, the stability boundaries of the system can be determined.  Concomitant with this process is an 
evaluation of the system tuning parameters that are used in the learning algorithm.  The desktop simulation 
environment provides a quick way to compare different learning algorithms and controller architectures.  Only the 
most promising designs need be simulated using higher fidelity simulations. 

The next level of simulation provides additional fidelity by incorporating important model nonlinearities.    
Adaptive controller nonlinearities are common, and therefore must be evaluated in nonlinear simulation.  This 
simulation is typically run on a workstation computer to handle the more intensive numerical operations.  The 
additional complexity of the nonlinear simulation allows detailed modeling of sensor input uncertainties, actuator 
dynamics, and assessment of adaptive controller performance and stability.  Inputs to the controller can come from a 
“pilot” in the loop, but more commonly from a predetermined set of inputs, typically impulses, steps, doublets, or 
frequency sweeps.  Obviously, the time spent to develop realistic aeroelastic and aerodynamic models is only 
justified after low-level simulation verifies that the basic learning system is sound. 

Higher fidelity test beds, like software-in-the-loop, hardware-in-the-loop, and aircraft-in-the-loop simulations, 
contain a combination of software models and hardware.  These software simulations typically run in dedicated 
computing environments with a cockpit and out-the-window graphics (e.g., see Refs. 68 and 69).  Typically they 
contain software models of nonlinear aerodynamics, engine dynamics, actuator models, and sensor models.  The 
most common elements of these test beds are some of the flight processors, communication buses and a cockpit.  
The aircraft-in-the-loop simulator maximizes the use of flight hardware components and minimizes the number of 
software models. Using the actual aircraft/spacecraft flight computer is a particularly important advantage of this 
simulation, since all computers tend to handle exceptions differently and may have differences in their numerical 
routines. Either the actual aircraft may be tied into the nonlinear simulation, or an iron-bird aircraft may be used to 
provide actuators, sensor noise, actual flight wiring, and some structural interactions.  These test beds allow for a 
complete check out of all interfaces to the flight hardware, timing tests, and various failure modes and effects 
analysis (FMEA) testing, which is not possible in a simpler configuration. 

Simulators that include a cockpit to interface with the pilot can either be fixed-based or motion-based.  Fixed-
based simulators have non-moving cockpits and usually include out-the-window graphics.  The moving cockpit of 
motion-based simulators additionally provide the pilot with some of the physical cues of actual flight.  Piloted 
simulation is an important part of verification and validation testing of flight control software.  

 
 

Table 1.  Types of Simulation 
 

Test Bed  Pilot Interface Fidelity Model Fidelity Test Environment 

Desktop Computer Low Low Linear simulation using Matlab or Simulink  

Work Station Low Low-Medium Models that include nonlinearities 

Simulator Low Medium Dedicated aircraft model and hardware 

Sim w/ Hardware –in-the Loop Medium to High Medium-High Actual aircraft target flight computer and cockpit  

Sim Aircraft-In-the-Loop High Medium-High Simulator with flight computer and aircraft 

Motion-Based Simulator High High Nonlinear simulation with moving cockpit 
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E. Tools to Improve Simulation Coverage 
A problem encountered in performing simulation is providing adequate test coverage.  Coverage concerns the 

percentage to which 1) every decision in a program has been executed at least once, 2) every decision in the 
computer program has been taken with all possible outcomes at least once, 3) every condition in a decision in the 
program has taken all possible outcomes at least once, 4) every condition in a decision has been shown to 
independently affect that decision’s outcome, and 5) all entry and exit points of the program have been tested.70  
Merely running a collection of simulation test cases may discover some problems, but can’t guarantee the absence of 
problems.  In order to help simulation achieve greater coverage, various tools and methods are being developed to 
implement simulation in a more systematic manner. 

In one such effort, the Automated Neural Flight Controller Test (ANCT)71 tool is being developed in the 
MATLAB environment.  ANCT has been designed to help test engineers evaluate different flight conditions, 
quantify performance, and determine regions of stability. It is equipped with a graphical user interface that allows 
the engineer to specify input parameters, minimum and maximum values, step increments, and success/failure 
requirements. ANCT uses MySQL for storage and management of the test cases, input data, and output data.  ANCT 
is designed to analyze a MATLAB/Simulink model by simulating the model using all possible combinations of the 
model inputs parameters. By introducing random numbers into the test inputs and parameters, the user can perform 
Monte Carlo simulation to estimate the sets of model parameters and inputs that correspond to the system responses 
that are of interest.  Based upon user input, ANCT creates the test cases and evaluates the time-series outputs during 
a specified time or condition window by using a user-specified output evaluation function. This process yields a 
performance score that represents the degree to which an output violates user-defined criteria or failure criteria, and 
includes a Pass/Fail status vector of the outputs.  ANCT also provides a genetic algorithm to explore the ranges over 
which parameters and inputs are allowed to vary. 

A simulation based robustness analysis tool, RASCLE (Robustness Analysis for Control Law Evaluation) has 
also been developed to help explore combinations of learning system parameters and operating conditions.72  The 
RASCLE simulation tool is used to interface with existing nonlinear simulations and incorporates search algorithms 
to uncover regions of instability with as few runs as possible.  RASCLE uses a gradient algorithm to identify the 
direction in the uncertainty space along which the stability of the system is most rapidly decreasing.  RASCLE 
provides an intelligent simulation-based search capability that can be used in Monte Carlo simulation evaluations.73 

F. Model Checking Methods for Learning Systems 
Over the last decade, the formal method of model checking has become an important tool for the verification of 

finite state automata.  Many types of model checkers have been proposed, for example explicit state model checkers 
(e.g., SPIN, JPF, JPF2), symbolic (e.g., SMV, NuSMV), and hybrid model checkers74-76.  Most of these techniques 
require that a model of the actual control program be written in a special language of the model checker, although 
some model checkers do not have this restriction.77  Once a finite state model of the program has been developed by 
using a logical abstraction method, the model checker can test all possible executions paths of the program and 
report any execution that leads to a violation of a user-defined property.  Model checkers can find errors that are 
almost impossible to find by human code review. 

Model checkers have found considerable application for outer-loop adaptive control system verification.  They 
have been useful for verification of autonomous systems such as NASA’s Remote Agent and K9 Mars Rover78.  The 
outer-loop controller of these programs use planners and schedulers to coordinate the actions of multiple program 
threads that execute in parallel.  As pointed out in Ref. 79, the program threads may sometimes interact in 
unexpected ways or conflict with each other in the use of shared resources.  Traditional, scenario-based testing may 
never discover some bad thread interaction sequences if they occur infrequently or only under circumstances not 
envisioned by the test team.  The use of these formal methods allow complete verification of every possible program 
execution path and can verify the programs are free of the most severe problems in multi-threaded programs, 
including thread deadlocks and data races.  As an aviation example, the NuSMV model checker has been used by 
Rockwell Collins to provide verification of the mode logic of the FCS 5000 flight guidance system being developed 
for use in business and regional jet aircraft.80  In this testing, NuSMV was used to check models (consisting solely of 
Boolean and enumerated types) with over 1020 reachable states in less than an hour. 

For the most part, model checking does not lend itself well to verification of inner-loop control and learning or 
adaptation.  The reason is that these processes are generally modeled as continuous systems, rather than as finite 
state automata.  Nevertheless, some recent progress has been made attempting to apply the technique of hybrid 
model checking to continuous systems.  Reference 81 describes an application of Java PathFinder to the control of a 
robotic vehicle.  The vehicle dynamics are modeled in the time domain as a set of first order differential equations 
(Eq. 1 applies here.)  The execution of the inner-loop controller is controlled by an outer-loop autonomous agent 



 
American Institute of Aeronautics and Astronautics 

 

12 

planner and scheduler.  Although the continuous variables ( yux ,, ) could assume an infinite number of values, and 
thereby presenting a state explosion problem for the model checker, the use of Java PathFinder is made possible 
through representing theses values as discrete quantities.  The use of an approximation function converts the 
continuous variables into discrete values.  The idea is similar to rounding a decimal number to the nearest integer, 
only in this case, the truncation is considerably coarser.  With this abstraction of the continuous space, the variables 
can be made to take on relatively few values.  This allows for the recognition of previous “states” in the model 
checking sense of the word, and hence an exploration of the continuous model checking space becomes possible.  Of 
course, this search is exhaustive only to the extent the approximation function is valid.  If the approximation 
function is too coarse, important states will likely be missed. 

G. Program Synthesis Methods for Certifiable Code Generation 
 

With very few exceptions, the software development cycle transforms software design specifications into code 
by a manual process that is then verified by code review, unit testing, functional integration testing, and validation.16  
Ultimately, if the code is for a civil aviation application, certification approval of the software may be sought.  
Proving adequate coverage of the learning system can be a particularly difficult aspect of the certification process. 

As an alternative to this development approach, a number of software vendors are now proposing a number of 
tools that can help to produce certifiable code, including code for learning systems.  It is important to understand at 
the outset that none of these tools can produce certified code, because airborne software is certified only as part of 
the verified and validated avionics package for a particular aircraft.  For this reason, software produced by these 
tools must still undergo a certification process to meet RTCA DO-178B standards.  Nevertheless, these tools 
produce code that has a much higher chance of passing certification requirements. 

AutoFilter is a tool being developed at NASA to automatically generate certifiable Kalman Filter code from 
high-level declarative specifications of state estimation problems.82  Although Kalman filters are widely used for 
state estimation in safety-critical systems, the complex mathematics and choice of many tuning parameters make 
implementation a difficult task.  The AutoFilter tool not only generates Kalman filter code automatically from high 
level specifications, but also generates various human-readable documents containing both design and safety related 
information required by certification standards such as DO-178B.  Program synthesis is accomplished through 
repeated application of schemas, or parameterized code fragment templates and a set of constraints formalizing the 
template's applicability to a given task.  Schemas represent the different types of learning algorithms.  AutoFilter 
applies rules of the logic backwards and computes, statement by statement, logical formulae or safety obligations 
which are then processed further by an automatic theorem prover. To perform this step automatically, however, 
auxiliary annotations are required throughout the code.  AutoFilter thus simultaneously synthesizes the code and all 
required annotations.  The annotations thereby allow automatic verification and produces machine-readable 
certificates showing that the generated code does not violate the required safety properties. 

Eurocopter has used the Safety Critical Application Development Environment (SCADE) tool to automatically 
generate certifiable auto-pilot software for the EC135 and EC155 helicopters.83  To use the SCADE tool, the user 
must describe the auto-pilot using precise formal specifications and rules for naming and structuring (Lustre 
language).  The tool incorporates a model checker (Design Verifier) to provide extensive code coverage according to 
the formal specifications.  SCADE generates readable and traceable C or Ada code for the auto-pilot and also 
automatically generates documentation useful for certification purposes.  

Another type of code synthesis is performed by auto-coders of such simulation programs as the Mathworks 
Matlab and Simulink67.  As stated above, these desktop simulation programs allow rapid development of learning 
system simulations by providing the use with a convenient visual programming interface.  Mathworks offers an 
autocoder tool in its Real-Time Workshop to translate the symbolic programming language seen on the desktop to 
actual real-time application code, usually in C or Ada.  To help verify the code generated by this program, 
Mathworks has incorporated runtime memory-checking tools, such as Rational's Purify; coverage tools, such as 
Rational's PureCoverage; and static analysis tools, such as Lint. In addition, a code coverage analysis capability built 
into the Target Language Compiler™ (TLC) helps verify that the TLC files responsible for converting the model to 
generated code are thoroughly tested.  To help improve code traceability to requirements, automatically hyperlinks 
between the generated code and the blocks from which it was generated are produced.  Automatically generated 
code from MathWorks tools has been certified for use on safety-critical projects such as Honeywell’s Commercial 
Aviation Systems Primus series avionics systems. 

In a desire to develop reliable software tools for safety-critical applications, Boeing has elected to use a subset 
of the Ada programming language, called Zbra84.  Boeing defined this subset based on its experience with safety 
critical systems, and language and tool construction issues that make commercial compilers too complex to 
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certify.  One of the most significant features of the Zbra compiler is its built in anomaly checker that looks for a 
number of error-prone coding patterns, such a use-before-set, no-use-after-set, static conditions that render parts of 
code unreachable, and loops whose exit conditions are loop-invariant.  Aside from eliminating many real-time 
problems found in most C code (e.g., pointers), Zbra was also developed to produce code that is cleaner and more 
traceable.  This was done to make the certification process easier. 

H. Tools for On-line Software Assurance 
As mentioned previously, learning systems may be used to identify transfer matrices and neural networks whose 

number of adjustable parameters greatly exceeds the true system degrees of freedom.  Although this may sound like 
a strength, it is actually a weakness because it makes it difficult to know whether the learning process has locked one 
of many locally optimal point solutions, or the actual globally optimum solution.  Although the techniques of model 
order reduction or pruning47 could be used to reduce the modeling degrees of freedom, and hence the number of 
possible solutions, the understanding of the physical system is rarely available to do this.  Transfer matrix elements 
or neural network weights found to be near zero at one test condition or scenario, may be highly important at 
another.  For this reason, research is being performed to develop tools to assess the on-line performance of the 
learning algorithms. 

As one approach to this problem, NASA Ames Research Center has developed a tool called the Confidence 
Tool to analyze the probability distribution of the neural network output using a Bayesian approach85.  This 
approach combines mathematical analysis with dynamic monitoring to compute the probability density function of 
neural network outputs while the learning process is on-going.  The Confidence Tool produces a real-time estimate 
of the variance of the neural network outputs.  A small variance indicates the network is likely producing a good, 
reliable estimate, and therefore, good performance of the neural network software can be expected.  The confidence 
tool can be used for pre-deployment verification as well as a software harness to monitor quality of the neural 
network during flight.  The outputs of the Confidence Tool can be used as a signal to stop and start neural network 
adaptation and also be used (with modification) to provide a guarantee of the maximum network error for 
certification purposes.  A strength of the Confidence Tool is that it can be used to verify convergent learning and yet 
only requires the specification of two tuning parameters that are easily computed based on some preliminary 
information about the system process and measurement noises.  A weakness of the tool is that it cannot distinguish 
between local and global learning solutions. 

Rule extraction schemes have been proposed as a means to determine if non-adaptive neural networks (trained 
before operation) provide a globally optimum solution.  Such methods include NNRules, M-of-N Rules, KT, Rulex 
and others.86-88  To apply the rule extraction method, the data set used to train neural network is also used to develop 
a set of mathematical “if-then” rules to describe the functioning of the neural network.  These rules are basically of 
the type 

IF condition 1 AND condition 2 AND condition 3 THEN RESULT 
 
where the conditions are queries that produce a yes-no, true-false result (e.g., airspeed less than 100 kts?) and the 
result relates something about the neural network (e.g., 0.5 < network weight(23) < 0.7).  These rules, in essence, 
define the globally optimum solution based on the current training data set.  The idea is that once the fixed neural 
network is placed into operation, data collection can continue to see if the rule set is still adequate to describe the 
network.  If it is, assurance of a globally optimum solution can be generated.  The collection of such data may be 
useful for certification purposes.  The weakness of the rule extraction approach is that it is not useful to judge the 
performance of neural networks that adaptively learn while in operation to respond to new environments and system 
uncertainties. 

V. Concluding Remarks 
The FAA certification requirement to show that learning software programs meet their intended function, do not 

negatively impact other systems or functions on the aircraft, and are safe for operation, as pointed out in RTCA DO-
178B17, involves more than just running a set of test cases.  The complete verification and validation of learning 
systems should not be viewed as running test cases and comparing expected results to actual results because such 
testing can never reveal the absence of errors.  The verification and validation objectives must be satisfied by a 
combination of reviews, analyses, the development of test cases and procedures, and the subsequent execution of 
those test procedures.   

Future progress towards the certification of learning software requires continued development of new tools for 
automated static analysis, model-checking for hybrid systems, methods for certifiable code generation, and tools to 
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provide on-line software assurance. Simulation and methods to automate simulation will continue to remain very 
important tools, because at present only they can really test and explore the most nagging problems of adaptive 
system verification, like algorithm stability and convergent learning.  And yet the fact that testing can never reveal 
the absence of errors is a major shortcoming of simulation.  

In all likelihood, a combination of analysis, tools, and simulation will be needed to fully address the full aspect 
of the certification problem for learning systems.  Nevertheless, a relevant cautionary remark of Heimdahl89 made 
for the concept of N-version programming applies equally well here too: the application of a combination of tools 
and analyses doesn’t mean success, because we don’t know how much confidence we can put in N-tools and 
methodologies as opposed to one. 
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